Perform inner product, cosine distance and L2 distance Search vector
Inner product search
To do Inner product search , call POST /v1.0/tenants/[tenant-guid]/vectorrepositories/[vector-repository-guid]/search
curl --location 'http://view.homedns.org:8000/v1.0/tenants/00000000-0000-0000-0000-000000000000/vectorrepositories/00000000-0000-0000-0000-000000000000/search' \
--header 'Content-Type: application/json' \
--header 'Authorization: ••••••' \
--data '{
"SearchType": "InnerProduct",
"MaxResults": 5,
"Embeddings": []
}'
import { ViewVectorProxySdk } from "view-sdk";
const api = new ViewVectorProxySdk(
"http://localhost:8000/", //endpoint
"<tenant-guid>", //tenant Id
"default" //access key
);
const vectorSearch = async () => {
try {
const response = await api.VectorSearch.vectorSearch(
"<vector-repository-guid>",
{
SearchType: "InnerProduct",
MaxResults: 5,
Embeddings: [ ],
}
);
console.log(response, "Vector search response");
} catch (err) {
console.log("Error vector search:", err);
}
};
vectorSearch();
import view_sdk
from view_sdk import lexi
sdk = view_sdk.configure( access_key="default",base_url="localhost", tenant_guid= "<tenant-guid>")
def innerProductSearch():
response = vector.Search.search(
SearchType = "InnerProduct",
MaxResults = 5,
Embeddings = [0.16624743426880373,-0.01494671253675528]
)
print(response)
innerProductSearch()
using View.Sdk;
using View.Sdk.Vector;
ViewVectorSdk sdk = new ViewVectorSdk(Guid.Parse("<tenant-guid>"),"default", "http://localhost:8000/");
VectorSearchRequest searchRequest = new VectorSearchRequest
{
VectorRepositoryGUID = Guid.Parse("<vector-repository-guid>"),
SearchType = VectorSearchTypeEnum.InnerProduct,
MaxResults = 5,
Embeddings = new List<float> { 0.16624743f, -0.01494671f, -0.94218636f }
};
var response = await sdk.VectorSearch(searchRequest);
Response
[
{
"DocumentGUID": "3f706ae4-ea86-4169-aa40-0870b0f8b9ad",
"TenantGUID": "00000000-0000-0000-0000-000000000000",
"CollectionGUID": "00000000-0000-0000-0000-000000000000",
"SourceDocumentGUID": "b213780c-1de1-4e7a-a87f-fb43807f2009",
"BucketGUID": "00000000-0000-0000-0000-000000000000",
"VectorRepositoryGUID": "00000000-0000-0000-0000-000000000000",
"GraphNodeIdentifier": "",
"ObjectGUID": "75019061-9a1d-457e-0000-f583b850f7ea",
"ObjectKey": "https://domain.com/project/stevens-cresto",
"ObjectVersion": "1",
"Model": "sentence-transformers/all-MiniLM-L6-v2",
"CellGUID": "c86eb1b0-0000-47e1-a993-291929384d69",
"CellType": "Text",
"CellMD5Hash": "******",
"CellSHA1Hash": "******",
"CellSHA256Hash": "******",
"CellPosition": 2,
"ChunkGUID": "b50913e5-6d9b-0000-a8ab-4ba86f694ab8",
"ChunkMD5Hash": "******",
"ChunkSHA1Hash": "******",
"ChunkSHA256Hash": "******",
"ChunkPosition": 0,
"ChunkLength": "Text content",
"Content": "",
"Score": 0.2749193608760834,
"Distance": 0,
"CreatedUtc": "2025-04-08T10:26:22.000000Z",
"Embeddings": [
-0.05686976
]
},
Cosine distance search
To do cosine distance search , call POST /v1.0/tenants/[tenant-guid]/vectorrepositories/[vector-repository-guid]/search
curl --location 'http://view.homedns.org:8000/v1.0/tenants/00000000-0000-0000-0000-000000000000/vectorrepositories/00000000-0000-0000-0000-000000000000/search' \
--header 'Content-Type: application/json' \
--header 'Authorization: ••••••' \
--data '{
"SearchType": "CosineDistance",
"MaxResults": 5,
"Embeddings": []
}'
import { ViewVectorProxySdk } from "view-sdk";
const api = new ViewVectorProxySdk(
"http://localhost:8000/", //endpoint
"<tenant-guid>", //tenant Id
"default" //access key
);
const vectorSearch = async () => {
try {
const response = await api.VectorSearch.vectorSearch(
"<vector-repository-guid>",
{
SearchType: "CosineDistance",
MaxResults: 5,
Embeddings: [ ],
}
);
console.log(response, "Vector search response");
} catch (err) {
console.log("Error vector search:", err);
}
};
vectorSearch();
import view_sdk
from view_sdk import lexi
sdk = view_sdk.configure( access_key="default",base_url="localhost", tenant_guid= "<tenant-guid>")
def innerProductSearch():
response = vector.Search.search(
SearchType = "CosineDistance",
MaxResults = 5,
Embeddings = [0.16624743426880373,-0.01494671253675528]
)
print(response)
innerProductSearch()
using View.Sdk;
using View.Sdk.Vector;
ViewVectorSdk sdk = new ViewVectorSdk(Guid.Parse("<tenant-guid>"),"default", "http://localhost:8000/");
VectorSearchRequest searchRequest = new VectorSearchRequest
{
VectorRepositoryGUID = Guid.Parse("<vector-repository-guid>"),
SearchType = VectorSearchTypeEnum.CosineDistance,
MaxResults = 5,
Embeddings = new List<float> { -0.99624743f, 0.01494671f }
};
var response = await sdk.VectorSearch(searchRequest);
L2 distance search
To L2 distance search , call POST /v1.0/tenants/[tenant-guid]/vectorrepositories/[vector-repository-guid]/search
curl --location 'http://view.homedns.org:8000/v1.0/tenants/00000000-0000-0000-0000-000000000000/vectorrepositories/00000000-0000-0000-0000-000000000000/search' \
--header 'Content-Type: application/json' \
--header 'Authorization: ••••••' \
--data '{
"SearchType": "L2Distance",
"MaxResults": 5,
"Embeddings": []
}'
import { ViewVectorProxySdk } from "view-sdk";
const api = new ViewVectorProxySdk(
"http://localhost:8000/", //endpoint
"<tenant-guid>", //tenant Id
"default" //access key
);
const vectorSearch = async () => {
try {
const response = await api.VectorSearch.vectorSearch(
"<vector-repository-guid>",
{
SearchType: "L2Distance",
MaxResults: 5,
Embeddings: [ ],
}
);
console.log(response, "Vector search response");
} catch (err) {
console.log("Error vector search:", err);
}
};
vectorSearch();
import view_sdk
from view_sdk import lexi
sdk = view_sdk.configure( access_key="default",base_url="localhost", tenant_guid= "<tenant-guid>")
def innerProductSearch():
response = vector.Search.search(
SearchType = "L2Distance",
MaxResults = 5,
Embeddings = [0.16624743426880373,-0.01494671253675528]
)
print(response)
innerProductSearch()
using View.Sdk;
using View.Sdk.Vector;
ViewVectorSdk sdk = new ViewVectorSdk(Guid.Parse("<tenant-guid>"),"default", "http://localhost:8000/");
VectorSearchRequest searchRequest = new VectorSearchRequest
{
VectorRepositoryGUID = Guid.Parse("<vector-repository-guid>"),
SearchType = VectorSearchTypeEnum.L2Distance,
MaxResults = 5,
Embeddings = new List<float> { 0.16624743f, -0.01494671f }
};
var response = await sdk.VectorSearch(searchRequest);
Find embeddings
To , find embeddings call POST /v1.0/tenants/[tenant-guid]/vectorrepositories/[vector-repository-guid]/find
curl --location 'http://view.homedns.org:8000/v1.0/tenants/00000000-0000-0000-0000-000000000000/vectorrepositories/00000000-0000-0000-0000-000000000000/find' \
--header 'Content-Type: application/json' \
--header 'Authorization: ••••••' \
--data '{
"Criteria": [
{
"SHA256Hash": "222"
},
{
"SHA256Hash": "111"
}
]
}'
import { ViewVectorProxySdk } from "view-sdk";
const api = new ViewVectorProxySdk(
"http://localhost:8000/", //endpoint
"<tenant-guid>", //tenant Id
"default" //access key
);;
const findEmbeddings = async () => {
try {
const response = await api.VectorSearch.findEmbeddings(
"<vector-repository-guid>",
{
Criteria: [
{
SHA256Hash: "222",
},
{
SHA256Hash: "111",
},
],
}
);
console.log(response, "Find embeddings response");
} catch (err) {
console.log("Error find embeddings:", err);
}
};
findEmbeddings();
import view_sdk
from view_sdk import lexi
sdk = view_sdk.configure( access_key="default",base_url="localhost", tenant_guid= "<tenant-guid>")
def findEmbeddings():
response = vector.Search.find_embeddings(
Criteria = [
{
"SHA256Hash": "222"
},
{
"SHA256Hash": "111"
}
]
)
print(response)
findEmbeddings()
using View.Sdk;
using View.Sdk.Vector;
using View.Sdk.Embeddings;
ViewVectorSdk sdk = new ViewVectorSdk(Guid.Parse("<tenant-guid>"),"default", "http://localhost:8000/");
FindEmbeddingsRequest embeddingRequest = new FindEmbeddingsRequest
{
VectorRepositoryGUID = Guid.Parse("<vector-repository-guid>"),
Criteria = new List<FindEmbeddingsObject>
{
new FindEmbeddingsObject { SHA256Hash = "222" },
new FindEmbeddingsObject { SHA256Hash = "111" }
}
};
var response = await sdk.FindEmbeddings(embeddingRequest);